Selection diagram

product option
accessory sold separately

Code structure

Housing		
FD	metal, one conduit entry	
FL	metal, three conduit entries	
FP	technopolymer, one conduit entry	
	Contact blocks	
$\mathbf{1 8}$	1NO+1NC, slow action	
$\mathbf{9 0}$	2NC, slow action	
$\mathbf{2 1}$	1NO+2NC, slow action	
$\mathbf{2 2}$	2NO, slow action	
$\mathbf{3 3}$	1NO+1NC, slow action	
$\mathbf{3 4}$	2NC, slow action	

Actuating head

78 Iongitudinal head
83 left transversal head (FD-FL housing only)
84 right transversal head (FD-FL housing only)

Actuating force
standard
E7 initial 20 N ...final 40 N (only head 78)
E9 initial 13 N ...final 75 N (only head 83-84)

Ambient temperature

$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors
without cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12 \mathrm{~mm}$

K50 M12 metal connector, 5 poles

Please contact our technical service for the complete list of possible combinations

Threaded conduit entry

M2 M20×1.5 (standard)
PG 13.5

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

Contact blocks
$331 \mathrm{NO}+1 \mathrm{NC}$, slow action
34 2NC, slow action

Actuating head
78 longitudinal head
83 left transversal head
84 right transversal head

Actuating force

standard
E7 initial 20 N ...final 40 N (only head 78)
E9 initial 13 N ...final 75 N (only head 83-84)

Ambient temperature

T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors without cable gland (standard)

K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12$ mm
K50 M12 metal connector, 5 poles

Contact type

silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating

Main features

- Metal or plastic housing, from one to three conduit entries
- Protection degree IP67
- In conformity with EN ISO 13850
- 7 contact blocks available
- Versions with vertical or horizontal actuation
- Versions with assembled M12 connector
- Versions with gold-plated silver contacts

Markings and quality marks:

((©). (6). © [fl

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
	(FD-FL-FC series)
	2007010305230014
EAC approval:	(FP series)
	RU C-IT ДM94.B.01024

Technical data

Housing

FP series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
FD, FL and FC series: metal housing, baked powder coating.
FD, FP, FC series: one threaded conduit entry: M20×1.5 (standard)
FL series - three threaded conduit entries: M20×1.5 (standard)
Protection degree:
IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

General data

For safety applications up to:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:
SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
2,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
1 cycle / 6 s
1 million operating cycles ${ }^{1}$
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
see pages 297-308
do one to open contacts, as defined in EN 60947-5-1.

Max. cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:
Contact blocks 18, 9:

min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14$)$

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, EN ISO 13850, EN 418, UL 508, CSA 22.2 No. 14. Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/122/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Description

These rope operated safety switches are installed on machines or conveyor belts, to activate the emergency stop of the machine on every hand intervention on the rope, from any point. They allow cost savings on machines of medium-large size, where normally many emergency stop push buttons can be replaced by one single switch. Provided with self-control function, they constantly check their correct operation, signalling with the opening of the contacts an eventual loosening or breaking of the rope. These safety switches keep the contacts open after their activation, even if the rope is left free, until they are reset.

Laser engraving

Orientable heads

Removing the four fastening screws, in all switches, it is possible to rotate the head in 90° steps.

Extended temperature range

This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Adjustment point indicator of the rope

All switches are provided with a green ring that shows the area of the correct tightening of the rope. The installer has only to tighten the rope until the black indicator will be in the middle of the green area. In this position it is possible to reset the switch, pulling the blue button, and to close the
electrical safety contacts
If a traction (or loosening) of the rope it is high enough to permit the black indicator to go outside the correct tension area, the safety contacts are opened and the reset device is triggered.

Characteristics approved by IMQ

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks $20,21,22,33,34$)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks 18, 9, 20, 21, 22, 33, 34
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

All devices are indelibly marked with a dedicated laser system that allows the marking to be also suitable for extreme environments. This system that does not use labels, prevents the loss of plate data and the marking is more resistant over time.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Reduced actuating force

If the rope stretching indicator is in the correct operation area, it is possible to close the electric safety contacts pulling the blue reset button. The green ring signal allows to know the reset condition quickly.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)

$$
\text { A600 (720 VA, } 120 \ldots 600 \mathrm{Vac})
$$

Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products.

Dimensional drawings				All measures in the drawings are in mm
Contact type: \mathbf{L} = slow action				
Contact blocks ${ }_{38}^{386}$				
18 L	FP 1878-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$	FD 1878-M2 Θ 1NO+1NC	FD 1883-M2 Θ 1NO+1NC	FD 1884-M2 Θ 1 ${ }^{\text {NO }+1 \mathrm{NC}}$
9 L	FP 978-M2 Θ 2NC	FD 978-M2 Θ 2NC	FD 983-M2 Θ 2NC	FD 984-M2 Θ 2NC
20 L	FP 2078-M2 \odot 1NO+2NC	FD 2078-M2 $\odot 1$ 1NO+2NC	FD 2083-M2 \odot 1NO+2NC	FD 2084-M2 $\odot 1$ 1NO+2NC
21 L	FP 2178-M2 Θ 3NC	FD 2178-M2 Θ 3NC	FD 2183-M2 Θ 3NC	FD 2184-M2 Θ 3NC
22 L	FP 2278-M2 \bigodot 2NO+1NC	FD 2278-M2 Θ 2NO+1NC	FD 2283-M2 Θ 2NO+1NC	FD 2284-M2 Θ 2NO+1NC
33 L	FP 3378-M2 \bigodot 1NO+1NC	FD 3378-M2 Θ 1NO+1NC	FD 3383-M2 Θ 1NO+1NC	FD 3384-M2 \bigodot 1 ${ }^{\text {NO+1NC }}$
$34 \square$	FP 3478-M2 Θ 2NC	FD 3478-M2 Θ 2NC	FD 3483-M2 Θ 2NC	FD 3484-M2 Θ 2NC
Min. force	Initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$ page 164 - group 1	Initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$ page 164 - group 1	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$ page 164-group 2	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$ page 164 - group 2
Travel diagrams				

Contact blocks			
18 L	FL 1878-M2 Θ 1NO+1NC	FL 1883-M2 Θ 1NO+1NC	FL 1884-M2 Θ 1NO+1NC
9 L	FL 978-M2 Θ 2NC	FL 983-M2 Θ 2NC	FL 984-M2 Θ 2NC
20 L	FL 2078-M2 Θ 1NO+2NC	FL 2083-M2 Θ 1NO+2NC	FL 2084-M2 Θ 1NO+2NC
21 L	FL 2178-M2 Θ 3NC	FL 2183-M2 Θ 3NC	FL 2184-M2 Θ 3NC
22 L	FL 2278-M2 Θ 2NO+1NC	FL 2283-M2 Θ 2NO+1NC	FL 2284-M2 Θ 2NO+1NC
33 L	FL 3378-M2 Θ 1NO+1NC	FL 3383-M2 Θ 1NO+1NC	FL 3384-M2 Θ 1NO+1NC
34 L	FL 3478-M2 Θ 2NC	FL 3483-M2 Θ 2NC	FL 3484-M2 Θ 2NC
Min. force	Initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams	page 164-group 1	page 164-group 2	page 164-group 2

How to read travel diagrams

Travel diagrams table

Contact blocks	Group 1	Group 2
$\begin{array}{ll} 18 & 1_{1}^{11}-t^{23} \\ 1 \mathrm{NO}+1 \mathrm{NC} & t_{24} \end{array}$		
$\begin{array}{lll} 9 & 1_{1} 1 & 21 \\ 2 \mathrm{NC} & -7^{21} & 22 \end{array}$		
$\begin{array}{llll} 20 & 21 \\ 1 \mathrm{NO}+2 \mathrm{NC} & 4 & f_{12} & 7 \\ 12 & 22 & -l^{33} \\ \hline 14 \end{array}$		
$\begin{array}{llll} 21 & 11 & 21 & 31 \\ 3 N C & 4 & -7 & -7 \\ 12 & 22 & -32 \end{array}$		
$\begin{array}{lll} 33 & \dot{5}_{14}^{13}-\underbrace{21}_{22} \\ 1 \mathrm{NC}+1 \mathrm{NO} & { }_{14} \end{array}$		$\begin{array}{l:ll} 0 & 8 & \Theta_{14}^{16} 16 \\ \hline & \mathrm{R}_{4} .5 & \mathrm{R} 12 \end{array}$
$\begin{array}{lll} 34 & 1_{1}^{11} & 21 \\ 2 \mathrm{NC} & 4^{2}-y^{2} & 22 \end{array}$		

IMPORTANT:

In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.

Application examples and max. rope length for switches with longitudinal head

Application examples and max. rope length for switches with transversal head

Max. rope length

Max. rope length for switches with longitudinal head

In the diagram, the suggested max. rope lengths with regard to changes of temperature (thermal differential) to which the switch is expected to be exposed in the working area are indicated. For instance, for an installation acc. to example C which expects a thermal differential of $30^{\circ} \mathrm{C}$, a max. rope length of 10 meters is suggested.

Important: The above data are guaranteed only using original rope and accessories. See page 175.

Adjustment of the operating point

Tighten the rope connected to the switch, until the end of the indicator (1) reaches about the middle of the green ring (2).

Pull the knob (3) in order to close the safety contacts inside the switch. Below the knob a green ring (4) will be disclosed.

