Selection diagram

Code structure

 Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office FD 1879-E7GM2K50T6| Housing | | |
| :---: | :---: | :---: |
| FD | metal, one conduit entry | |
| FL | metal, three conduit entries | |
| FP | technopolymer, one conduit entry | |
| Contact blocks | | |
| | 18 | 1NO+1NC, slow action |
| | 9 | 2NC, slow action |
| | 20 | 1NO+2NC, slow action |
| | 21 | 3NC, slow action |
| | 22 | 2NO+1NC, slow action |
| | 33 | 1NO+1NC, slow action |
| | 34 | 2NC, slow action |

Ambient temperature

$$
\begin{array}{l|l}
& -25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C} \text { (standard) } \\
\hline \text { T6 } & -40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}
\end{array}
$$

Pre-installed cable glands or connectors without cable gland or connector (standard)

K23 cable gland for cables Ø 6...Ø 12 mm
...
K50 M12 metal connector, 5 poles

Please contact our technical service for the complete list of possible combinations.

Threaded conduit entry

M2 M20×1.5 (standard) PG 13.5

Contact type

silver contacts (standard)
G
silver contacts with $1 \mu \mathrm{~m}$ gold coating
\qquad $\frac{\text { options }}{2-18}$ FC 3379-E7GM2K50T6

article options
 FD 874-E7GM2K50T6

Housing

FD metal, one conduit entry
FL metal, three conduit entries
FP technopolymer, one conduit entry
FR technopolymer, one conduit entry
FM metal, one conduit entry
FX technopolymer, two conduit entries
FZ metal, two conduit entries

Actuating force

standard
E7 initial $20 \mathrm{~N} . .$. final 40 N

Contact type	
	silver contacts (standard)
G	silver contacts with 1μ m gold coating

Pre-installed cable glands or connectors without cable gland or connector (standard)

K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12$ mm

K50 M12 metal connector, 5 poles
 combinations.

Threaded conduit entry	
M2	M20×1.5 (standard)
M1	M16x1.5 (FR-FX housing only)
	PG 13.5
A	PG 11 (FR-FX housing only)

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Main features

- Metal or plastic housing, from one to three conduit entries
- Protection degree IP67
-7 contact blocks available
- Versions with vertical or horizontal actuation
- Versions with assembled M12 connector
- Versions with gold-plated silver contacts

Markings and quality marks:
C $\mathbb{C H}$) OL_{L} us © ECL

IMQ approval:	EG605 (FD-FL-FP-FC series)
	EG610 (FR-FX series)
	EG609 (FM-FZ series)
UL approval:	E131787
CCC approval:	2007010305230000
	(FD-FL-FC series)
	2007010305230014
	(FP series)
	2007010305230013
	(FR-FX series)
	2007010305229998
	(FM-FZ series)
EAC approval:	RU C-IT ДM94.B.01024

Technical data

Housing

FP, FR, FX series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation: \square
FD, FL, FC, FM, FZ series: metal housing, baked powder coating.
FD, FP, FC, FR, FM series - one threaded conduit entry: M20x1.5 (standard)
FX series - two knock-out threaded conduit entries: M20×1.5 (standard)
FZ series - two threaded conduit entries:
M20×1.5 (standard)
FL series - three threaded conduit entries:
Protection degree:
M20×1.5 (standard)
IP67 acc. to EN 60529 with
cable gland having equal or higher protection degree

General data

For safety applications up to:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$: 2,000,000 for NC contacts
Servi
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
1 cycle / 6 s
1 million operating cycles ${ }^{1}$
$0.5 \mathrm{~m} / \mathrm{s}$
Tightening torques for installation:
$1 \mathrm{~mm} / \mathrm{s}$
see pages 297-308
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact blocks 18, 8, 9:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.
Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Electrical data			Utilization category			
	Thermal current (Ith): Rated insulation voltage (Ui): Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33, 34) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	250	400	500
			le (A)	6	4	1
			Direct current: DC13			
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct current: DC13			
			Ue (V)	24	125	250
			le (A)	4	1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)			
			$\mathrm{Ue}(\mathrm{V})$ 24 le (A) 2 Direct current: DC13 Ue (V) 24 le (A) 2			

Description

These rope operated safety switches are installed on machines or conveyor belts, to activate the simple stop of the machine on every hand intervention on the rope, from any point.
Provided with self-control function, they constantly check their correct operation, signalling with the opening of the contacts an eventual loosening or breaking of the rope.

Orientable heads

Removing the four fastening screws, in all switches, it is possible to rotate the head in 90° steps.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Adjustment point indicator of the rope

The switches (head 79 and 80) are provided with a green ring that shows the area of the correct tightening of the rope. The installer has only to tighten the rope until the black indicator will be in the middle of the green area. If a traction (or loosening) of the rope it is high enough to permit the black indicator to go outside the correct tension area, the safety contacts will open.

Extended temperature range

$-40^{\circ} \mathrm{C}$
This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Actuating forces

These switches can be supplied with reduced hardness interna springs on request. This makes it possible to reduce the physical effort required to actuate the switch, whilst maintaining the actuating stroke of the electrical contacts unchanged. Particularly suitable for spans of reduced dimensions, they must always be matched to the suspension of the rope pulley.

Characteristics approved by IMQ

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks $20,21,22,33,34$
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $18,8,9,20,21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamenta
requirements of the Low Voltage Directive 2006/95/EC.

Characteristics approved by UL

Utilization categories Q300 (69 VA, 125 ... 250 Vdc)

$$
\text { A600 (720 VA, } 120 \text {... } 600 \text { Vac }
$$

Data of housing type 1, 4 X "indoor use only", 12,13
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Dimensional drawings				All measures in the drawings are in mm
Contact type: \mathbf{L} = slow action				
18 L	FP 1879-M2 Θ 1 ${ }^{\text {NO+1NC }}$		FD 1879-M2 Θ 1NO+1NC	FD 1880-M2 Θ 1NO
9 L	FP 979-M2 Θ 2NC		FD 979-M2 Θ 2NC	FD 980-M2 Θ 2NC
20 L	FP 2079-M2 Θ 1 $\mathrm{NO}+2 \mathrm{NC}$		FD 2079-M2 Θ 1NO+2NC	FD 2080-M2 Θ 1NO+2NC
$21 \square$	FP 2179-M2 Θ 3NC		FD 2179-M2 Θ 3NC	FD 2180-M2 Θ 3NC
22 L	FP 2279-M2 Θ 2NO+1NC		FD 2279-M2 Θ 2NO+1NC	FD 2280-M2 Θ 2NO+1NC
$33 \square$	FP 3379-M2 Θ 1 ${ }^{\text {d }}+1$ +1NC		FD 3379-M2 Θ 1NO+1NC	FD 3380-M2 Θ 1NO+1NC
34 L	FP 3479-M2 Θ 2NC		FD 3479-M2 Θ 2NC	FD 3480-M2 Θ 2NC
Min. force	Initial 63 N...final $83 \mathrm{~N}(90 \mathrm{~N} \Theta$ page 172 -group 1		Initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N} \Theta)$ page 172 - group 1	Initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$ page 172 - group 2

How to read travel diagrams

IMPORTANT:

In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.
Contact type:
$\mathrm{L}=$ slow action

Contact blocks				
8 L	FR 874-M2 \quad 1NC	FM 874-M2 Θ 1NC	FX 874-M2 Θ 1NC	FZ 874-M2 \quad 1NC
Min. force Travel diagrams	Initial 63 N...final 83 N 90 N page 172 - group 3	Initial 63 N....final 83 N 190 N page 172 - group 3	Initial 63 N...final 83 N 90 N page 172 - group 3	Initial $63 \mathrm{~N} . .$. final $83 \mathrm{~N}(90 \mathrm{~N}$ page 172 - group 3

Travel diagrams table

Application examples and max. rope length for switches with longitudinal head

Application examples and max. rope length for switches with transversal head

Max. rope length

Max. rope length for switches with longitudinal head

In the diagram, the suggested max. rope lengths with regard to changes of temperature (thermal differential) to which the switch is expected to be exposed in the working area are indicated. For instance, for an installation acc. to example C which expects a thermal differential of $30^{\circ} \mathrm{C}$, a max. rope length of 10 meters is suggested.

Important: The above data are guaranteed only using original rope and accessories. See page 175.

Adjustment of the operating point

For switches with head $\mathbf{7 9}$ and $\mathbf{8 0}$: Tighten the rope connected to the switch, until the end of the indicator (1) reaches about the middle of the green ring (2).

For switches with head 74: Tighten the rope connected to the switch until the thimble will be at about 4 mm from the head.

