Description

Pizzato Elettrica widens its own range of products with the new HP-HC series of safety hinge switches, where safety and style are melted in one single product.
The electrical switch is completely integrated in the mechanical hinge, to result practically invisible to an inexpert eye. This guarantees a higher safety because a switch hard to identify is consequently also more difficult to defeat. The assembly without visible screws and the pleasant line, make the switch perfectly integrated also with guards of modern design machinery. In order to complete the offer complementary hinges with purely mechanics functions are available.

Adjustment of the operating point

The operating point of the switches can be set with a flatblade screwdriver.
The operating point regulation allows the setting possibility for large guards. After the setting, it's always necessary to seal the hole with the supplied safety seal plug.

Integrated M12 connector

Versions with connection from the top or the bottom are available with integrated M12 connector.
The application of versions with connector allows a faster wiring when it's necessary to move guards from test line to final user.

Protection degrees IP67 and IP69K
D \quad These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529. They can therefore be used in all environments where the maximum protection of the housing is required. Special measures also allow devices to be used even in machines which are subjected to washing with high pressure warm water jets. In fact these devices pass the IP69K test according to ISO 20653, using jets of water to 100 atmospheres at a temperature of $80^{\circ} \mathrm{C}$.

Cable with connector at the back

The version with a rear cable and M12 connector is the best combination between aesthetics and connection ease. When machineries have to be assembled by the final customer, this solution allows to hide the wiring and at the same time to easily connect or disconnect it from inside the machinery.

Variations of the activation base angle

New versions with the switch activation angle equal to a multiple of 15° (e.g. 45° or 90°) are available on request.
The different activation angle does not invalidate the possibility to adjust the operating point through the switch adjusting screws. The variation of the operating angle does not alter the switch maximum mechanical travel.

Opening angle up to 180°

The mechanical design of the switch allows the application also on protections up to 180° opening angle.

Versions for glass or polycarbonate doors

It's available a variation of the switch
 shape specifically designed for glass and polycarbonate doors without frame.
The wider supporting arm and the spaced fixing points facilitate the installation and prevent the cracking caused by holes too near the guard edge.
However, it is necessary to verify that the door mechanical stop is not performed by the switch.

Additional hinges

To complete installation, various types of additional hinges are available, varying in numbers depending on the protection guard weight.
These hinges keep the same aesthetics and without the electrical part their price is lower.

Application examples

- Switch without supports
- Rear fixing
- Cable output, rear

- Switch with angular supports for profiles with - Switch with plane supports for profiles with slots
- Fixing with internal screws
- Connector output, bottom
slots
- Fixing with front screws.
- Cable output, bottom

Closed door

Open door

- Direct fixing to the polycarbonate plate
- Switch without supports
- Fixing with internal screws
- Connector output, rear.

Selection diagram

ADDITIONAL HINGES

HC LL

HC AA

HC AB

Code structure

HC AA

Additional hinges ($\mathrm{H} \times \mathrm{L}$)
HC AA $100.6 \times 49 \mathrm{~mm}$
HC AB $100.6 \times 79 \mathrm{~mm}$
HC LL $65 \times 44.5 \mathrm{~mm}$

Main features

- Metal housing, cable output at top, bottom or rear
- 4 integrated cable types available
- Versions with M12 connector
- Protection degrees IP67 and IP69K
- 9 contact blocks with positive opening Θ
- Additional hinges without contacts

Markings and quality marks:

IMQ approval:
UL approval:
CCC approval:
EAC approval:

CA02.03746 E131787
2013010305647255
RU C-IT ДМ94.B. 01024

Technical data

Housing

Metal housing, baked powder coating
Version with integrated cable, length 2 m , other lengths on request.
Versions with integrated M12 connector, 5 or 8 poles
Protection degree:
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
(Protect the cables from direct
high-pressure and high-temperature jets)

General data

For safety applications up to: SIL 3 acc. to EN 62061
Mechanical interlock, not coded:
PL e acc. to EN ISO 13849-1
type 1 acc. to EN ISO 14119
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
5,000,000 for NC contacts

Max. actuation speed:
20 years
See table on page 56
1200 operating cycles ${ }^{1} /$ hour

Min. actuation speed:
1 million operating cycles ${ }^{1}$

Mounting position:
90%

Max. axial load:
any
Max. radial load:
Tightening torque, M5 screws:
1500 N (HP AA) / 750 N (HP AB)
$1000 \mathrm{~N}(\mathrm{HP} \mathrm{AA}) / 500 \mathrm{~N}(\mathrm{HP} \mathrm{AB})$
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in

EN 60947-5-1. After 1 million operating cycles the operating point increases by 1.8°.

Electrical data

Rated impulse withstand voltage Uimp:
Conditional short circuit current:

4 kV

1000 A acc. to EN 60947-5-1
Pollution degree:

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, ISO 20653, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No. 14.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
© If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements on page 297.
\Important: Switch off the circuit voltage before disconnecting the connector from the switch. The connector is not suitable for separation of electrical loads. According to EN 60204-1, versions with 8-pin 2NO+2NC M12 connector can be used only in PELV circuits.

Characteristics approved by IMO

```
Rated insulation voltage (Ui): 250 Vac
Conventional free air thermal current (lth): 10 A (1-2 contacts) / 6 A (2-3 contacts)
/ 4A(4 contacts or5-pin M12 connector)
Protection against short circuits (fuse): 10 A (1-2 contacts)/6A (2-3 contacts)/
    4A (4 contacts or 5-pin M12 connector), gG type
Rated impulse withstand voltage ( ( ( imp): 4 kV
Protection degree of the housing: IP67
MA terminals (saddle clamps)
Pollution degree:
Utilization category:
Operating voltage (Ue): }\quad250\textrm{Vac}(50\textrm{Hz})/24 Vdc (with connector
Operating current (le): }\quad3\textrm{A}/2\textrm{A}\mathrm{ (with connector)
AC15 / DC13 (with connector)
Forms of the contact element: }X,Y,X+Y,X+X,Y+Y,Y+Y+X,X+X+Y,X+X+Y+
Positive opening of contacts on contact blocks 50A,50C,50D,50F, 50G,50M,
51A, 51C, 51D, 51F, 51G, 51M, 52A, 52C, 52D, 52F, 52G, 52M, 53A, 53C, 53D,
53F, 53G, 53M
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009,
fundamental requirements of the Low Voltage Directive 2006/95/EC.
```

Characteristics approved by UL

Utilization categories	R300 pilot duty ($28 \mathrm{VA}, 125-250 \mathrm{Vdc}$) B300 pilot duty (360VA, 120-240 Vac) (1-2-3 cont.) C300 pilot duty ($180 \mathrm{VA}, 120-240 \mathrm{Vac}$) (4 cont.)
Data of housing type 1, 4X "indoor use only", 12.	
Housing data for versi	with 1-2 contacts and type N cable type 1, 4X "indoor use only"

Please contact our technical service for the list of approved products.

Utilization temperatures and electrical data

Dimensional drawings							All measures in the drawings are in mm		
Contact type:\mathbf{L} $=$ slow action $\mathbf{L O}$ $=$ slow action overlapped	2 m cable, bottom			2 m cable, top			2 m cable, rear		
slow action Loverlapped Contact blocks									
52 C L	HP AA052C-2SN	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$	HP AA052C-2AN	Θ	1NO+1NC	HP AA052C-2PN	Θ	$1 \mathrm{NO}+1 \mathrm{NC}$
52D L	HP AA052D-2SN	Θ	2 NC	HP AA052D-2AN	Θ	2 NC	HP AA052D-2PN	Θ	2 NC
52 F L	HP AA052F-2SN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$	HP AA052F-2AN	Θ	1NO+2NC	HP AA052F-2PN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$
52 M L	HP AA052M-2SN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA052M-2AN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA052M-2PN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$
53C L0	HP AA053C-2SN	\odot	$1 \mathrm{NO}+1 \mathrm{NC}$	HP AA053C-2AN	\odot	1NO+1NC	HP AA053C-2PN	\odot	$1 \mathrm{NO}+1 \mathrm{NC}$
53F L0	HP AA053F-2SN	Θ	1NO+2NC	HP AA053F-2AN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$	HP AA053F-2PN	Θ	$1 \mathrm{NO}+2 \mathrm{NC}$
53M Lo	HP AA053M-2SN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA053M-2AN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$	HP AA053M-2PN	Θ	$2 \mathrm{NO}+2 \mathrm{NC}$
Min. force	0.3 Nm (0.	m ()		0.3 Nm (0)	m ()		0.3 Nm (0	m)	
Travel diagrams	page 59			page 59			page 59		

Contact type:	M12 connector, bottom	M12 connector, top	cable (0.2 m) and M12 connector, rear
$\begin{array}{cc} \mathbf{L} & =\text { slow action } \\ \mathbf{L O} & =\text { slow action } \\ \text { overlapped } \end{array}$ Contact blocks			
52C L	HP AA052C-KSM $\quad \Theta$ 1NO+1NC	HP AA052C-KAM $\quad \Theta$ 1NO+1NC	HP AA052C-0.2PM $\quad \Theta$ 1NO+1NC
52D L	HP AA052D-KSM $\quad \Theta$ 2NC	HP AA052D-KAM Θ 2NC	HP AA052D-0.2PM \quad 2NC
52 F L	HP AA052F-KSM \quad 1NO+2NC	HP AA052F-KAM $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	HP AA052F-0.2PM $\quad \Theta$ 1NO+2NC
52 M -	HP AA052M-KSM \quad 2NO+2NC	HP AA052M-KAM \quad 2NO+2NC	HP AA052M-0.2PM $\quad \Theta$ 2NO+2NC
53C L0	HP AA053C-KSM Θ 1NO+1NC	HP AA053C-KAM Θ 1NO+1NC	HP AA053C-0.2PM \quad 1NO+1NC
53F L0	HP AA053F-KSM \quad 1NO+2NC	HP AA053F-KAM \quad 1NO+2NC	HP AA053F-0.2PM $\quad \Theta$ 1NO+2NC
53 M LO	HP AA053M-KSM Θ 2NO+2NC	HP AA053M-KAM $\Theta 2 N \mathrm{C}+2 \mathrm{NC}$	HP AA053M-0.2PM $\quad \Theta$ 2NO+2NC
Min. force	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$
Travel diagrams	page 59-group 1	page 59-group 1	page 59-group 1

[^0]
Versions for glass or polycarbonate doors - Dimensional drawings

Contact type:	M12 connector, bottom	M12 connector, top	cable (0.2 m) and M12 connector, rear
$\begin{aligned} \hline \mathbf{L} & =\text { slow action } \\ \mathbf{L O} & =\text { slow action } \\ & \text { overlapped } \end{aligned}$ Contact blocks			
52 C L	HP AB052C-KSM $\quad \Theta$ 1NO+1NC	HP AB052C-KAM $\quad \Theta$ 1NO+1NC	HP AB052C-0.2PM $\quad \Theta 1 \mathrm{NO}+1 \mathrm{NC}$
52D L	HP AB052D-KSM $\quad \rightarrow$ 2NC	HP AB052D-KAM Θ 2NC	HP AB052D-0.2PM $\quad \rightarrow$ 2NC
52 F L	HP AB052F-KSM $\quad \Theta$ 1NO+2NC	HP AB052F-KAM Θ 1NO+2NC	HP AB052F-0.2PM \quad 1NO+2NC
52 M L	HP AB052M-KSM $\quad \Theta$ 2NO+2NC	HP AB052M-KAM $\quad \Theta$ 2NO+2NC	HP AB052M-0.2PM \quad 2NO+2NC
53C L0	HP AB053C-KSM $\quad \Theta$ 1NO+1NC	HP AB053C-KAM $\quad \rightarrow$ 1NO+1NC	HP AB053C-0.2PM $\quad \rightarrow$ 1NO+1NC
53 F L0	HP AB053F-KSM $\quad \Theta 1 \mathrm{NO}+2 \mathrm{NC}$	HP AB053F-KAM \quad 1NO+2NC	HP AB053F-0.2PM \quad 1NO+2NC
53 M LO	HP AB053M-KSM $\quad \Theta$ 2NO+2NC	HP AB053M-KAM Θ 2NO+2NC	HP AB053M-0.2PM $\quad \Theta$ 2NO+2NC
Min. force	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$	$0.3 \mathrm{Nm}(0.65 \mathrm{Nm} \Theta)$
Travel diagrams	page 59-group 1	page 59-group 1	page 59 - group 1

[^1] hinge does not guarantee the correct operation of the safety device.

HCAA	

Travel diagrams

Contact blocks	Group 1	Contact blocks	Group 1	Contact blocks	Group 1
$\begin{array}{ll} 52 \mathrm{C} & \dot{\prime}--4 \\ 1 \mathrm{NO}+1 \mathrm{NC} & \end{array}$		$\begin{array}{ll} 53 \mathrm{C} & \dot{1}--4 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{array}$		$\begin{array}{ll} 50 \mathrm{C} & \dot{\prime}--4 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{array}$	$\stackrel{0 \quad 4^{\circ} \Theta_{1.5^{\circ}}^{8^{\circ}}}{ }$
$\begin{array}{ll} \text { 52D } \\ \text { 2NC } \end{array}$		$\begin{array}{ll} 53 \mathrm{~F} \\ 1 \mathrm{NO}+2 \mathrm{NC} \end{array} \quad \neq-\neq-\lambda^{\prime}$		$\begin{aligned} & \text { 50D } \\ & \text { 2NC } \end{aligned}$	$4 \underbrace{4^{\circ} \stackrel{4^{\circ}}{8^{\circ}}}_{1.5^{\circ}}$
$\begin{aligned} & 52 \mathrm{~F} \\ & 1 \mathrm{NO}+2 \mathrm{NC} \end{aligned} \quad \neq-7-y^{\prime}$		$\begin{aligned} & 53 \mathrm{M} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned} \quad \neq-\boldsymbol{y}^{2}-\mathcal{Y}^{\prime}$		$\begin{array}{ll} 50 \mathrm{~F} \\ 1 \mathrm{NO}+2 \mathrm{NC} \end{array} \quad \neq-\neq-\boldsymbol{f}^{\prime}$	

The contact operating point indicated in the travel diagrams can be adjusted from 0° to $+4^{\circ}$.

Accessories

Article

Description

Protection cap of regulation screw
The plug is supplied with every hinge and must always be inserted after the operating point regulation.
In case of loss or damage, the cap can be ordered separately.

Legend

Olosed contact
Open contact
Pushing the switch / Releasing the switch

Max. forces and loads HP AA

Admitted max. loads, independent of utilization conditions.

Doors with one safety hinge
$\mathrm{F}_{\text {max } .}(\mathrm{N})=25,000 / \mathrm{D}(\mathrm{mm})$

Legend

[^2]Doors with one safety hinge and one additional hinge

Doors with one safety hinge and two additional hinges

The 2D and 3D files are available at www.pizzato.com

Legend	
$F_{\max }$	Force exercised by the door weight (N)
D	Distance from the door barycentre to the hinge axis (mm)
A	Safety hinge
B	Additional hinge

Legend

$\begin{array}{ll}D^{\max } & \text { Distance from the door barycentre to the hinge axis }(\mathrm{mm}) \\ \text { A } & \text { Safety hinge } \\ \text { B } & \text { Additional hinge }\end{array}$

Fixing plates

Doors with one safety hinge and two additional hinges $\mathrm{F}_{\text {max }}(\mathrm{N})=200,000 / \mathrm{D}(\mathrm{mm})$

All measures in the drawings are in mm

Fixing screws for profile not supplied.

VF SFH1-C | Couple of angular supports for HP AA and |
| :---: |
| HC AA supplied with fixing screws for switch |

[^0]: Attention! The safety hinge switch can be combined together exclusively with one or more Pizzato Elettrica hinges (series HP or HC). The use of whichever other hinge does not guarantee the correct operation of the safety device.

[^1]: Attention! The safety hinge switch can be combined together exclusively with one or more Pizzato Elettrica hinges (series HP or HC). The use of whichever other

[^2]: $\begin{array}{ll}F_{\text {max }} & \text { Force exercised by the door weight (} N \text {) } \\ D & \text { Distance from the }\end{array}$

 | A |
 | :--- |
 | B | Distance from the door barycentre to the hinge axis (mm) Safety hinge Additional hinge

