

Code structure

Main features

- Metal housing or technopolymer housing,
from one to two conduit entries
- Protection degree IP67
- 12 contact blocks available
- Versions with M12 connector
- Versions with gold-plated silver contacts
- Versions with stainless steel external metallic parts

Markings and quality marks:

IMQ approval:	EG610 (FR-FX-FK series)
	EG609 (FM-FZ series)
UL approval:	E131787
CCC approval:	2007010305230013
	(FR-FX-FK series)
	2007010305229998
	(FM-FZ series)
EAC approval:	RU C-IT ДM94.B.01024

Technical data

Housing

FR, FX and FK series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation: \square
FM and FZ series: metal housing, baked powder coating.
FR, FM series - one threaded conduit entry: M20×1.5 (standard)
FK series: one threaded conduit entry: M16x1.5 (standard)
FX series - two knock-out threaded conduit entries: M20×1.5 (standard)
FZ series - two threaded conduit entries: M20x1.5 (standard)
Protection degree: IP67 acc. to EN 60529 with cable gland having equal or higher protection degree

General data

For safety applications up to:
SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
Mechanical interlock, not coded:
type 1 acc. to EN ISO 14119
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$: 5,000,00 for NC contacts
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour

Min. actuation speed:
1 million operating cycles ${ }^{1}$
180%
2\%s
see pages 297-308
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact blocks 5, 6, 7, 9, 14, 18, 66 :

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.
\ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Electrical data			Utilization category				
	Thermal current (Ith): Rated insulation voltage (Ui): Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$: Conditional short circuit current: Protection against short circuits: Pollution degree:	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33,34) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$)				
			Ue (V) 250 400 500 le (A) 6 4 1 Direct current:				
			Direct current: DC13 Ue (V) 24 125 le (A) 6 1.1			$\begin{aligned} & 250 \\ & 0.4 \end{aligned}$	
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$)				
			Ue (V)	24	120	250	
			le (A)	4	4	4	
			Direct c	ent: D			
			$\mathrm{Ue}(\mathrm{V})$	24	125	250	
			le (A)	4	1.1	0.4	
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 ($50 \div 60 \mathrm{~Hz}$) $\mathrm{Ue}(\mathrm{V}) \quad 24$				
			$\text { le }(A) \quad 2$				
			Direct current: DC13				
			Ue (V)	24			
			le (A)	2			

Description

These safety switches are ideal to control gates or doors protecting hazardous parts of machines without inertia. They are very sensitive and positively open the contacts after few degrees of rotation, sending an immediate stop signal. The head adjustable in 90° steps allows their installation in four different positions. Available with technopolymer or metal housings, with protection degree IP67. Its special shape allows to use this type of switches also in those areas where dust and dirt could block working of normal safety switches with separate actuator.

Orientable heads

Removing the four fastening screws, in all switches, it is possible to rotate the head in 90° steps. This allows you to use the same switch on both right- and left-facing door fronts.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Application examples

Extended temperature range

This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Adjustable operating point

When installing the device, you can adjust the contact operating point over the entire 360° range. By affixing the stud screw, you can check the correct activation angle adjustment, and quickly and easily adjust it if required. Once adjustment is complete, you can render the device tamper-proof against commonly used tools using the supplied lock pin.

Characteristics approved by IMO

Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks $20,21,22,33,34$)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,14,18,20,21,22,33,34,66$
In conformity with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Characteristics approved by UL

Utilization categories O 300 ($69 \mathrm{VA}, 125$... 250 Vdc) A600 (720 VA, $120 \ldots 600 \mathrm{Vac})$
Data of housing type $1,4 \mathrm{X}$ "indoor use only", 12, 13
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in (0.8 Nm).

In conformity with standard: UL 508, CSA 22.2 No. 14

Please contact our technical service for the list of approved products

Dimensional drawings			All measures in the drawings are in mm
Contact type:$\begin{aligned} & \hline \mathbf{R}=\text { snap action } \\ & \hline \mathbf{L}=\text { slow action } \\ & \hline \mathbf{L O}=\text { slow action } \\ & \text { overlapped } \\ & \mathbf{L S}=\text { slow action } \\ & \text { shifted } \end{aligned}$	Technopolymer housing	Technopolymer housing	Technopolymer housing
5 R	FR 596-M2 Θ 1NO+1NC	FX 596-M2 Θ 1NO+1NC	
6 L	FR 696-M2 Θ 1NO+1NC	FX 696-M2 Θ 1NO+1NC	
7 L0	FR 796-M2 Θ 1NO+1NC	FX 796-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	
9 L	FR 996-M2 Θ 2NC	FX 996-M2 Θ 2NC	
14 LS	FR 1496-M2 Θ 2NC	FX 1496-M2 Θ 2NC	
18 L	FR 1896-M2 Θ 1NO+1NC	FX 1896-M2 Θ 1NO+1NC	
20 L	FR 2096-M2 Θ 1NO+2NC	FX 2096-M2 Θ 1NO+2NC	
$21 \square$	FR 2196-M2 Θ 3NC	FX 2196-M2 Θ 3nC	
$22 \square$	FR 2296-M2 Θ 2NO+1NC	FX 2296-M2 Θ 2NO+1NC	
$33 \square$	FR 3396-M2 Θ 1NO+1NC	FX 3396-M2 Θ 1NO+1NC	FK 3396-M1 Θ 1NO+1NC
$34 \square$	FR 3496-M2 \bigodot 2NC	FX 3496-M2 Θ 2NC	FK 3496-M1 \odot 2NC
66 L	FR 6696-M2 Θ 1NC	FX 6696-M2 Θ 1NC	
Min. force	$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$	$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$	$0.15 \mathrm{Nm}(0.4 \mathrm{Nm} \Theta)$
Travel diagrams	page 304 - group 9	page 304 - group 9	page 304 - group 9

Dimensional drawings for actuators

Adjustment of the operating point

Temporary shaft locking (dowel provided)

Verify the operating point according to EN ISO 13857, adjust the operating point again if necessary.

