Selection diagram

product option
accessory sold separately

Code structure

article			
			ED
Housing			
FD	metal, one conduit entry		
FP	technopolymer, one conduit entry		
Contact blocks			
		Contacts activated by the lock	Contact activated by actuator extraction
	18	$1 \mathrm{NO}+1 \mathrm{NC}$	
	20	1NO+2NC	
	21	3NC	
	22	2NO+1NC	
	28	1NO+1NC	1NC
	29	2NC	1NC
	30	1NC	2NC
	33	1NO+1NC	
	34	2NC	

Actuators

> without actuator (standard)

F straight actuator VF KEYF
F1 angled actuator VF KEYF1
F2 jointed actuator VF KEYF2
F3 jointed actuator adjustable in two directions VF KEYF3
F7 jointed actuator adjustable in one direction VF KEYF7

F8 universal actuator VF KEYF8

Threaded conduit entry

M2 M20×1.5 (standard) PG 13.5

[^0]Pre-installed cable glands or connectors without cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots \varnothing 12$ mm

K50 M12 metal connector, 5 poles

Please contact our technical service for the complete list of possible combinations.

Ambient temperature

	$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Lock key coding
one standard key coding (371)
V200 up to 50 different key codings

Main features

- Metal housing or technopolymer housing,
one conduit entry
- Protection degree IP67
- 9 contact blocks available
- 6 stainless steel actuators available
- Versions with assembled M12 connector
- Versions with gold-plated silver contacts
- Strong actuator locking (1000 N)
- Release of the actuator by key

Markings and quality marks:

C E (H) , UL us ©

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
	(FD series)
	2007010305230014
EAC approval:	(FP series)
	RU C-IT ДM94.B.01024

Technical data

Housing

FP series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation: \square
FD series: metal housing, baked powder coating.
Metal head, coated with baked epoxy powder.
One threaded conduit entry: M20×1.5 (standard)
Protection degree: IP67 acc. to EN 60529 with cable gland having equal or higher protection degree

General data

For safety applications up to:
Interlock with mechanical lock, coded:
Coding level:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1 \text { max: }}$
Max. holding force F_{zn} :
Max. backlash of the actuator:
Actuator extraction force:
Tightening torques for installation:
SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 2 acc. to EN ISO 14119
Low acc. to EN ISO 14119
1,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour
500,000 operating cycles ${ }^{1}$
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
1000 N acc. to EN ISO 14119
770 N according to EN ISO 14119
4.5 mm

30 N
see pages 297-308
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 28, 29, 30, 33, 34:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:
IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, BG-GS-ET-15, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and
EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

〔. If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Electrical data} \& \multicolumn{4}{|l|}{Utilization category} \\
\hline \& \begin{tabular}{l}
Thermal current (Ith): \\
Rated insulation voltage (Ui): \\
Rated impulse withstand voltage (\(\mathrm{U}_{\text {imp }}\)): \\
Conditional short circuit current: Protection against short circuits: Pollution degree:
\end{tabular} \& \begin{tabular}{l}
10 A \\
500 Vac 600 Vdc \\
400 Vac 500 Vdc contactblocks \(20,21,22,28,29,30,33,34)\) \\
6 kV \\
4 kV (contact blocks 20, 21, 22, 28, 29, 30, 33, 34) \\
1000 A acc. to EN 60947-5-1 \\
type aM fuse 10 A 500 V \\
3
\end{tabular} \& \begin{tabular}{l}
Alternatin \\
Ue (V) \\
le (A) \\
Direct \\
Ue (V) \\
le (A)
\end{tabular} \& curre
250
6
ent:
24
6 \& C15
400
4

125

1.1 \& | 60 Hz |
| :--- |
| 500 |
| 1 |
| 250 |
| 0.4 |

\hline \& Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree: \& | 4 A |
| :--- |
| 250 Vac 300 Vdc |
| type gG fuse 4 A 500 V |
| 3 | \& | Alternat |
| :--- |
| Ue (V) |
| le (A) |
| Direct |
| Ue (V) |
| le (A) | \& curre

24
4
ent:
24

4 \& $$
\begin{aligned}
& \text { AC15 } \\
& 120 \\
& 4 \\
& 125 \\
& 1.1
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 60 \mathrm{~Hz}) \\
& 250 \\
& 4 \\
& 250 \\
& 0.4
\end{aligned}
$$
\]

\hline \& Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree: \& ```
2A
30 Vac 36 Vdc
type gG fuse 2 A 500 V
3

``` & \begin{tabular}{l}
Alternat \\
Ue (V) \\
le (A) \\
Direct \\
Ue (V) \\
le (A)
\end{tabular} & curre
24
2
ent:
24
2
2 & C15 & \[
\div 60 \mathrm{~Hz}
\] \\
\hline 137 & & (1) pizato delublio & & & eral & gue 20 \\
\hline
\end{tabular}

\section*{Description}


This type of switches is applied on fences or protections where entrance is allowed to authorized personnel only. They have been studied to control large protected areas where operators may physically enter. Supplied with a strong lock, the actuator can be removed from the head only after a complete rotation \(\left(180^{\circ}\right)\) of the locking key. During the key rotation, electrical contacts are switched, and the actuator will be released only after NC contacts are positively opened. Contacts activated by the key locking device will be reset to the initial position only with inserted actuator and with key in locking position. It is impossible to rotate the key when the key locking device is unlocked and the actuator is removed (C state). These switches are considered interlocks with locking in accordance with ISO 14119, and the product is marked on the side with the symbol shown.

\section*{Orientable head and release device}


The head can be quickly turned on each of the four sides of the switch by unfastening the two fixing screws.
The auxiliary key release device can be rotated in \(90^{\circ}\) steps as well. This enables the switch to assume 32 different configurations.

\section*{Protection degree IP67}


These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Holding force of the unlocked actuator


The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several doors are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked doors in their position with a retaining force of 30 N , stopping any vibrations or gusts of wind from opening them.

Laser engraving


All devices are indelibly marked with a dedicated laser system that allows the marking to be also suitable for extreme environments. This system that does not use labels, prevents the loss of plate data and the marking is more resistant over time.

\section*{Actuator regulation zone}


The head of this switch is equipped with an actuator with a wide range of travel. In this way the guard can oscillate along the direction of insertion \((4.5 \mathrm{~mm})\) without causing unwanted machine shutdowns. This extensive travel is available in all actuators, in order to ensure maximum device reliability.

\section*{Contact blocks}


> Contact blocks with captive screws, finger protection, twin bridge contacts and double interruption for a higher contact reliability.

\section*{Extended temperature range}
\(-40^{\circ} \mathrm{C}\)
This range of switches is also available in a special version with an ambient operating temperature range of \(-40^{\circ} \mathrm{C}\) to \(+80^{\circ} \mathrm{C}\).
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities

\section*{Safety screws for actuators}


As required by ISO 14119, the actuator must be fixed immovably to the door frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered with using common tools. See accessories on page 295.

\section*{Characteristics approved by UL}

Utilization categories Q300 ( 69 VA, \(125 \ldots 250 \mathrm{Vdc}\) )
\[
\text { A600 (720 VA, } 120 \text {... } 600 \text { Vac) }
\]

Data of housing type 1, 4X "indoor use only", 12, 13
For all contact blocks use 60 or \(75^{\circ} \mathrm{C}\) copper (Cu) conductor, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in \((0.8 \mathrm{Nm})\).

In conformity with standard: UL 508, CSA 22.2 No. 14

Utilization category: AC15
Please contact our technical service for the list of approved products.

\section*{Operation}

The switch is fixed to the machine body (A), while the stainless steel actuator is fastened to the guard (B). Once installed, the switch will firmly lock the actuator. To remove the actuator, it is necessary to unlock the key locking device rotating the key (C). When the actuator is removed, the key cannot be put into the initial position anymore. In the example is pointed out how it is possible to have contacts moved by the key lock or by the actuator and how it is possible to install the switch inside the machine, keeping externally visible only the release device.


Working cycle steps


\section*{Utilization limits}

Do not use where dust and dirt may penetrate in any way into the head and deposit there, in particular where metal dust, concrete or chemicals are spread. Adhere to the ISO 14119 requirements regarding low level of coding for interlocks. Do not use in environments with the presence of explosive or flammable gas. In these cases, use ATEX products (check the specific Pizzato catalogue). Attention! These switches alone are not suitable for applications where operators may physically enter the dangerous area, because an eventual closing of the door behind them could restart the machine operation. In this case the entry locking device VF KB1 shown on page 142 must be used.

Contact positions related to switch states
\begin{tabular}{c} 
Operating state \\
Actuator
\end{tabular}
Lock

The key can be extracted from the lock with blocked or released actuator.

Dimensional drawings All measures in the drawings are in mm
\begin{tabular}{|c|c|c|}
\hline & Technopolymer housing & Metal housing \\
\hline Contact type:
\[
\mathbf{L}=\text { slow action }
\] & Without actuator, supplied with two keys & Without actuator, supplied with two keys \\
\hline L \(=\) slow action

Contact blocks &  &  \\
\hline \multirow[t]{2}{*}{18 L} & FP 1899-M2 \(\leftrightarrow\) - \({ }^{\text {d }}\) NO+1NC & FD 1899-M2 \(\rightarrow\) - 1NO+1NC \\
\hline &  &  \\
\hline \multirow[t]{2}{*}{20 L} & FP 2099-M2 \(₫\) W \({ }^{\text {a }}\) NO+2NC & FD 2099-M2 \(\rightarrow\) - 1NO+2NC \\
\hline &  &  \\
\hline \multirow[t]{2}{*}{21 L} & FP 2199-M2 \(\rightarrow\) l \(\Theta 3 N C\) & FD 2199-M2 \(\rightarrow\) - \({ }^{\text {d }}\) NC \\
\hline &  & \[
e_{\substack{12-122 \\ 31-32}}^{\substack{11-12}}{ }^{0^{\circ}}{ }^{95^{\circ}}{ }^{180^{\circ}}
\] \\
\hline \multirow[t]{2}{*}{22 L} & FP 2299-M2 \(₫\) W \({ }^{\text {d }}\) NO+1NC & FD 2299-M2 \(\rightarrow\) - \({ }^{\text {2 }}\) NO+1NC \\
\hline &  &  \\
\hline \multirow[t]{2}{*}{28 L} & FP 2899-M2 \(\rightarrow\) - \({ }^{\text {1 }}\) NO+2NC & FD 2899-M2 \(\rightarrow\) - \({ }^{\text {d }}\) NO+2NC \\
\hline &  &  \\
\hline \multirow[t]{2}{*}{\(29 \square\)} & FP 2999-M2 \(\rightarrow\) l \(\Theta\) 3NC & FD 2999-M2 \(\rightarrow\) - \({ }^{\text {d }}\) NC \\
\hline &  &  \\
\hline \multirow[t]{2}{*}{30 L} & FP 3099-M2 \(\rightarrow\) l \(\Theta 3 N C\) & FD 3099-M2 \(\rightarrow\) I \(\Theta 3 N C\) \\
\hline &  &  \\
\hline \multirow[t]{2}{*}{33 L} & FP 3399-M2 \(\rightarrow\) - \({ }^{\text {d }}\) NO+1NC & FD 3399-M2 \(\rightarrow\) - 1NO+1NC \\
\hline &  &  \\
\hline \multirow[t]{2}{*}{34 L} & FP 3499-M2 \(\rightarrow\) - \({ }^{\text {N }}\) NC & FD 3499-M2 \(\rightarrow\) - \({ }^{\text {N }}\) N \\
\hline &  &  \\
\hline Min. force & \(30 \mathrm{~N}(40 \mathrm{~N} \Theta)\) & \(30 \mathrm{~N}(40 \mathrm{~N} \Theta)\) \\
\hline
\end{tabular}

Legend: \(\Theta\) With positive opening according to EN 60947-5-1, \(\begin{aligned} & \text { interlock with lock monitoring in accordance with EN ISO } 14119\end{aligned}\)

\section*{How to read travel diagrams}


\section*{IMPORTANT:}

NC contact has (œ) to be considered with inserted actuator and lock by the lock. In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol \(\Theta\). Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.

\section*{Stainless steel actuators}

IMPORTANT: These actuators can be used with items of the FD, FP, FL, FC and FS series only (e.g. FD 1899-M2).
Low level of coding acc. to EN ISO 14119.



The actuator can flex in four directions for applications where the door alignment is not precise.


Actuator adjustable in one direction for doors with reduced dimensions.


Actuator adjustable in two directions for doors with reduced dimensions.

\section*{Universal actuator VF KEYF8}

IMPORTANT: These actuators can be used with items of the FD, FP, FL, FC and FS series only (e.g. FD 1899-M2).
Low level of coding acc. to EN ISO 14119


Joined and two directions adjustable actuator for doors with reduced dimensions.
The actuator has two couples of fixing holes and it is possible to rotate by \(90^{\circ}\) the actuator-working plan.



Accessories


\section*{Description}

Set of two locking keys
Extra copy of the locking
keys to be purchased if further keys are needed (standard supply 2 units). The keys of all switches have the same code. Other codes on request.```


[^0]:    Contact type
    silver contacts (standard)
    G
    silver contacts with $1 \mu \mathrm{~m}$ gold coating

