Selection diagram

product option
accessory sold separately

Code structure

Main features

- Metal housing or technopolymer housing,
from one to three conduit entries
- Protection degree IP67
- 9 contact blocks available
- 6 stainless steel actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Markings and quality marks:

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
	(FD-FL-FC series)
	2007010305230014
EAC approval:	(FP series)
	RU C-IT ДM94.B.01024

Technical data

Housing

FP series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
FD, FL and FC series: metal housing, baked powder coating.
Metal head, baked powder coating.
FD, FP, FC series: one threaded conduit entry:
M20x1.5 (standard)
FL series - three threaded conduit entries:
Protection degree:
M20×1.5 (standard)
IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

General data

For safety applications up to:
Mechanical interlock, coded:
Coding level:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:
see pages 297-308
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact blocks 5, 6, 7, 9:

min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times A W G 16)$
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\operatorname{max.}$	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)

In conformity with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, BG-GS-ET-15, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

In conformity with the requirements of:

Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/108/EC.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1
$\widehat{4}$ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 297 to page 308.

Electrical data		Utilization category
	Thermal current (Ith):	
	Rated insulation voltage (Ui):	10 A

Description

These safety switches are ideal for controlling gates, sliding doors and other guards which protect dangerous parts of machines without inertia.
The stainless steel actuator is fastened to the moving part of the guard, so it is removed from the switch on every opening of the guard. The switch mechanism guarantees that removing the actuator forces the positive opening of the electrical contacts. Easy to install, these switches can be applied to any kind of protection (with hinge, sliding and removable ones). Besides, the possibility to actuate the switch only with its actuator guarantees that the machine can be restarted only when the guard has been closed. Made of rugged materials and with oversized thickness, these switches are designed for the use on heavy guards.

Wide-ranging actuator travel

The head of this switch is equipped with an actuator with a wide range of travel. In this way the guard can oscillate along the direction of insertion (4.5 mm) without causing unwanted machine shutdowns. This extensive travel is available in all actuators, in order to ensure maximum device reliability.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Safety screws for actuators

As required by EN ISO 14119, the actuator must be fixed immovably to the door frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered with using common tools. See accessories on page 295.

Laser engraving

All devices are indelibly marked with a dedicated laser system that allows the marking to be also suitable for extreme environments. This system that does not use labels, prevents the loss of plate data and the marking is more resistant over time.

Extended temperature range

$-40^{\circ} \mathrm{C}$
This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain unchanged their features also in these conditions, widening the installation possibilities.

Characteristics approved by IMO
Rated insulation voltage (Ui): 500 Vac
400 Vac (for contact blocks 20, 21, 22, 33, 34)
Conventional free air thermal current (lth): 10 A
Protection against short circuits: type aM fuse 10 A 500 V
Rated impulse withstand voltage ($U_{\text {imp }}$): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree 3
Utilization category: AC15
Operating voltage (Ue): $400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le): 3 A
Forms of the contact element: $Z b, Y+Y, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,20,21,22,33,34$
In conformity with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2006/95/EC.

Dimensional drawings					All measures in the drawings are in mm
Contact type:$\begin{aligned} \mathbf{R} & =\text { snap action } \\ \hline \mathbf{\mathbf { L }} & =\text { slow action } \\ \mathbf{L \mathbf { L O }} & =\text { slow action } \\ & \text { overlapped } \end{aligned}$		Technopolymer housing	Metal housing	Metal housing	Metal housing
		Without actuator	Without actuator	Without actuator	Without actuator
 Conta	action action action apped ocks				
5	R	FP 593-M2 \bigodot - ${ }^{1 N 0+1 N C}$	FD 593-M2 Θ 1 ${ }^{1 N+1 N C}$	FL 593-M2 Θ 1 ${ }^{1 N+1 N C}$	
6	\square	FP 693-M2 \bigodot - ${ }^{1 N O+1 N C}$	FD 693-M2 Θ - ${ }^{1 N O+1 N C}$	FL 693-M2 $\Theta{ }^{1 N O+1 N C}$	
7	L0	FP 793-M2 $\bigodot 1 \mathrm{NO}^{+1 \mathrm{NC}}$	FD 793-M2 Θ - ${ }^{1 N O+1 N C}$	FL 793-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	
				$\underset{5}{\stackrel{07.5}{\square+10.5}}$	
9	\square	FP 993-M2 Θ 2NC	FD 993-M2 Θ 2NC	FL 993-M2 Θ 2NC	
			0		
20	-	FP 2093-M2 Θ 1 ${ }^{\text {NO+2NC }}$	FD 2093-M2 $\odot 1$ 1 ${ }^{\text {+ }+2 N C}$	FL 2093-M2 $\Theta 1$ (NO+2NC	
21	\square	FP 2193-M2 Θ 3NC	FD 2193-M2 Θ 3NC	FL 2193-M2 Θ 3NC	
		0	$0 .$	$0 .$	
22	-	FP 2293-M2 Θ 2 ${ }^{\text {NO}+1 \mathrm{NC}}$	FD 2293-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2293-M2 $¢$ 2 ${ }^{\text {NO+1NC }}$	
				$\stackrel{\text { 5.8 }}{\substack{0 . \Theta_{8.8}}}$	
33	\square	FP 3393-M2 Θ 1 ${ }^{1 N+1 N C}$	FD 3393-M2 $\odot 1{ }^{1 N+1 N C}$	FL 3393-M2 $¢{ }^{1 N 0+1 N C}$	FC 3393-M2 $\odot 1{ }^{1 N O+1 N C}$
			$\underbrace{0.3}_{5.9} \stackrel{\oplus .3}{0.3}$	$\underbrace{0.3}_{5.9} \stackrel{\Theta}{5.3}_{\infty}^{\infty}$	$\underbrace{0.3}_{5.9} \stackrel{\ominus}{5}_{0.3}^{\infty}$
34	\square	FP 3493-M2 Θ 2NC	FD 3493-M2 $¢$ 2NC	FL 3493-M2 Θ 2NC	FC 3493-M2 \odot 2NC
		$0 .$			
		$10 \mathrm{~N}(18 \mathrm{~N} \Theta)$			

How to read travel diagrams

All measures in the diagrams are in mm

IMPORTANT:

NC contact has to be considered with inserted actuator. In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.

Utilization limits

Do not use where dust and dirt may penetrate in any way into the head and deposit there, in particular where metal dust, concrete or chemicals are spread. Adhere to the EN ISO 14119 requirements regarding low level of coding for interlocks. Do not use in environments with the presence of explosive or flammable gas. In these cases, use ATEX products (check the specific Pizzato catalogue).

Stainless steel actuators

All measures in the drawings are in mm

IMPORTANT: These actuators can be used with items of the FD, FP, FL, FC and FS series only (e.g. FD 693-M2).
Low level of coding acc. to EN ISO 14119.

The actuator can flex in four directions for applications where the door alignment is not precise.

Actuator adjustable in one direction for doors with reduced dimensions.

Accessories

Actuator adjustable in two directions for doors with reduced dimensions.

Joined and two directions adjustable actuator for doors with reduced dimensions.
The actuator has two couples of fixing holes and it is possible to rotate by 90° the actuator-working plan.
Body material: zinc alloy

